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Motivation: Fully Homomorphic Encryption
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Motivation: Noise Level
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Valid for decryption:
noise level within some parameter L (L ≈ 17 in practice)



Motivation: Bootstrap Operations
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Goal: Minimize the number of bootstrap operations



Bootstrap Problem

Input:

a directed acyclic graph G = (V ,E ) with two kinds of vertices:

` = max(·, ·)

` = 1 + max(·, ·)
an integer parameter L

Output:

a subset S ⊆ V of minimum cardinality such that bootstrapping S
ensures ` ≤ L at every vertex



Previous Results

Greedy approaches with approximation ratio Ω(|V |)
[Gentry Halevi 2011; Gentry Halevi Smart 2012]

Heuristic method
[Lepoint Paillier 2013]

Polynomial time algorithm for L = 1 and NP-hardness for L ≥ 2
[Paindavoine Vialla 2015]



Our Results

Approximation

Polynomial-time L-approximation algorithm (L ≥ 1)

Idea: linear program and new rounding scheme

Inapproximability

UG-hard to compute an (L− ε)-approximation (L ≥ 2)

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]
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Preliminary Observation

L = 2
a path containing 3 red vertices

⇓
some vertex is bootstrapped

Interesting path: containing L + 1 red vertices

Observation

bootstrap solution ⇐⇒ every interesting path has a bootstrapped vertex



Linear Program Relaxation

xv =

{
1 if v is bootstrapped

0 otherwise
v4

v3

v2

v1

constraint: xv1 + xv2 + xv3 + xv4 ≥ 1

min
∑
v∈V

xv

s. t.
∑
v∈p

xv ≥ 1 ∀ interesting path p

0 ≤ xv ≤ 1 ∀ v ∈ V



Rounding Algorithm

Definition:

length of a path: sum of xv along the path

fv ,i : minimum length of a path that ends at v and contains
i red vertices

Interval Av ,i := [fv ,i , fv ,i + xv ]

Randomized Rounding

1 Pick t ∈ [0, 1] uniformly at random

2 For every vertex v , bootstrap v if t ∈ Av ,i for some i ∈ {1, . . . , L}.



Correctness

Need to show:
Every interesting path v1, . . . , vk contains a bootstrapped vertex.

Define ij := # red vertices among v1, . . . , vj .

Claim

The union of Avj ,ij covers the [0, 1]-interval.
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Correctness

Claim

The union of Avj ,ij covers the [0, 1]-interval.

Proof:
1 Av1,i1 starts at 0;
2 every pair of consecutive intervals Avj ,ij and Avj+1,ij+1

intersect;
3 Avk ,ik covers 1.

0 1

Av1,i1 Av2,i2 Av3,i3 Avk,ik

ik = L + 1 =⇒ fvk ,ik ≥ 1 by definition of f and LP constraints



L-Approximation

A vertex v is bootstrapped if t ∈ Av ,i for some i ∈ {1, . . . , L}.

P[v is bootstapped] ≤ L · xv .

Expected number of bootstrapped vertices:∑
v∈V

L · xv ≤ L ·OPT.



Conclusion

Approximation

Polynomial-time L-approximation algorithm (L ≥ 1)

Inapproximability

UG-hard to compute an (L− ε)-approximation (L ≥ 2)



Thank you!



Motivation: Classical Encryption
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Motivation: Classical Encryption
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Motivation: Fully Homomorphic Encryption
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Derandomization

{fv ,i}v ,i ∪ {fv ,i + xv}v ,i contains 2|V | · L values.

[0, 1] interval is decomposed into O(|V | · L) sub-intervals.

Deterministic Rounding

1 For each sub-interval, pick any t and perform the previous rounding;

2 Return the best solution found.



Inapproximability

DAG Vertex Deletion (DVD) problem (Svensson 2013):
Input:

a directed acyclic graph G = (V ,E )

an integer parameter L

Output:

a subset S ⊆ V of minimum cardinality such that G \ S contains
no path of L vertices.

Inapproximability for DVD [Svensson]

NP-hard to compute an (L− ε)-approximation for the DVD problem
(L ≥ 2), assuming the Unique Games Conjecture



Inapproximability

Reduction from DVD to the bootstrap problem:

DVD instance ⇐⇒ bootstrap instance with red and white vertices

Technical issues: indegree in the DVD problem is not bounded;
indegree in the bootstrap problem is bounded by 2

Inapproximability for bootstrap problem

NP-hard to compute an (L− ε)-approximation for the bootstrap problem
(L ≥ 2), assuming the Unique Games Conjecture
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