Optimization of Bootstrapping in Circuits

Fabrice Benhamouda

Tancrède Lepoint Claire Mathieu

Hang Zhou

IBM Research, USA

SRI International École Normale Supérieure

Max Planck Institute

SODA'17

Motivation: Fully Homomorphic Encryption

Motivation: Noise Level

Valid for decryption:

noise level within some parameter L ($L \approx 17$ in practice)

Goal: Minimize the number of bootstrap operations

Input:

• a directed acyclic graph G = (V, E) with two kinds of vertices:

$$\ell = \max(\cdot, \cdot)$$
$$\ell = 1 + \max(\cdot, \cdot)$$

• an integer parameter L

Output:

 a subset S ⊆ V of minimum cardinality such that bootstrapping S ensures ℓ ≤ L at every vertex

- Greedy approaches with approximation ratio $\Omega(|V|)$ [Gentry Halevi 2011; Gentry Halevi Smart 2012]
- Heuristic method [Lepoint Paillier 2013]
- Polynomial time algorithm for L = 1 and NP-hardness for $L \ge 2$ [Paindavoine Vialla 2015]

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Idea: linear program and new rounding scheme

Inapproximability

UG-hard to compute an $(L - \epsilon)$ -approximation $(L \ge 2)$

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Idea: linear program and new rounding scheme

Inapproximability

UG-hard to compute an $(L - \epsilon)$ -approximation $(L \ge 2)$

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

 $\begin{array}{l} \mathcal{L}=2\\ \text{a path containing 3 red vertices}\\ & \Downarrow\\ \text{some vertex is bootstrapped} \end{array}$

 $\begin{array}{l} \mathcal{L}=2\\ \text{a path containing 3 red vertices}\\ \\ \Downarrow\\ \text{some vertex is bootstrapped} \end{array}$

 $\begin{array}{c} L=2\\ \text{a path containing 3 red vertices}\\ \\ \Downarrow\\ \text{some vertex is bootstrapped} \end{array}$

Interesting path: containing L + 1 red vertices

 $\begin{array}{c} \mathcal{L}=2\\ \text{a path containing 3 red vertices}\\ & \Downarrow\\ \text{some vertex is bootstrapped} \end{array}$

Interesting path: containing L + 1 red vertices

Observation

bootstrap solution \iff every interesting path has a bootstrapped vertex

Linear Program Relaxation

constraint: $x_{v_1} + x_{v_2} + x_{v_3} + x_{v_4} \ge 1$

Definition:

- length of a path: sum of x_v along the path
- $f_{v,i}$: minimum length of a path that ends at v and contains i red vertices
- Interval $A_{v,i} := [f_{v,i}, f_{v,i} + x_v]$

Randomized Rounding

- Pick $t \in [0,1]$ uniformly at random
- **2** For every vertex v, bootstrap v if $t \in A_{v,i}$ for some $i \in \{1, ..., L\}$.

Need to show: Every interesting path v_1, \ldots, v_k contains a bootstrapped vertex.

Define $i_j := \#$ red vertices among v_1, \ldots, v_j .

Claim

The union of A_{v_i,i_j} covers the [0,1]-interval.

Claim

The union of A_{v_i,i_j} covers the [0,1]-interval.

Proof:

0

- A_{v_1,i_1} starts at 0;
- 2 every pair of consecutive intervals A_{v_i,i_i} and $A_{v_{i+1},i_{i+1}}$ intersect;

1

3 A_{v_k,i_k} covers 1.

Claim

The union of A_{v_i,i_j} covers the [0,1]-interval.

Proof:

- A_{v_1,i_1} starts at 0;
- 2 every pair of consecutive intervals A_{v_i,i_i} and $A_{v_{i+1},i_{i+1}}$ intersect;
- 3 A_{v_k,i_k} covers 1.

Claim

The union of A_{v_i,i_j} covers the [0, 1]-interval.

Proof:

A_{v1,i1} starts at 0;
every pair of consecutive intervals A_{vj,ij} and A_{vj+1,ij+1} intersect;
A_{vk,ik} covers 1.

Claim

The union of A_{v_i,i_j} covers the [0, 1]-interval.

Proof:

\$\$A_{v_1,i_1}\$ starts at 0;
\$every pair of consecutive intervals \$\$A_{v_j,i_j}\$ and \$\$A_{v_{j+1},i_{j+1}}\$ intersect;
\$\$A_{v_k,i_k}\$ covers 1.

Claim

The union of A_{v_i,i_j} covers the [0, 1]-interval.

Proof:

A_{v1,i1} starts at 0;
every pair of consecutive intervals A_{vj,ij} and A_{vj+1,ij+1} intersect;
A_{vk,ik} covers 1.

Claim

The union of A_{v_i,i_j} covers the [0, 1]-interval.

Proof:

A_{v1,i1} starts at 0;
every pair of consecutive intervals A_{vj,ij} and A_{vj+1,ij+1} intersect;
A_{vk,ik} covers 1.

Claim

The union of A_{v_i,i_j} covers the [0, 1]-interval.

Proof:

• A_{v_1,i_1} starts at 0;

2 every pair of consecutive intervals A_{v_i,i_i} and $A_{v_{i+1},i_{i+1}}$ intersect;

• A_{v_k,i_k} covers 1.

 $i_k = L + 1 \implies f_{v_k, i_k} \ge 1$ by definition of f and LP constraints

A vertex v is bootstrapped if $t \in A_{v,i}$ for some $i \in \{1, \ldots, L\}$.

 $\mathbb{P}[v \text{ is bootstapped}] \leq L \cdot x_v.$

Expected number of bootstrapped vertices:

$$\sum_{v \in V} L \cdot x_v \leq L \cdot \text{OPT.}$$

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Inapproximability

UG-hard to compute an $(L - \epsilon)$ -approximation $(L \ge 2)$

Thank you!

Motivation: Classical Encryption

Motivation: Classical Encryption

Motivation: Fully Homomorphic Encryption

Motivation: Fully Homomorphic Encryption

 $\{f_{\mathbf{v},i}\}_{\mathbf{v},i} \cup \{f_{\mathbf{v},i} + x_{\mathbf{v}}\}_{\mathbf{v},i}$ contains $2|V| \cdot L$ values.

[0,1] interval is decomposed into $\mathcal{O}(|\mathcal{V}|\cdot L)$ sub-intervals.

Deterministic Rounding

- For each sub-interval, pick any t and perform the previous rounding;
- Return the best solution found.

DAG Vertex Deletion (DVD) problem (Svensson 2013): Input:

- a directed acyclic graph G = (V, E)
- an integer parameter L

Output:

 a subset S ⊆ V of minimum cardinality such that G \ S contains no path of L vertices.

Inapproximability for DVD [Svensson]

NP-hard to compute an $(L - \epsilon)$ -approximation for the DVD problem $(L \ge 2)$, assuming the Unique Games Conjecture

Reduction from DVD to the bootstrap problem:

- DVD instance \iff bootstrap instance with red and white vertices
- Technical issues: indegree in the DVD problem is not bounded; indegree in the bootstrap problem is bounded by 2

Inapproximability for bootstrap problem

NP-hard to compute an $(L - \epsilon)$ -approximation for the bootstrap problem $(L \ge 2)$, assuming the Unique Games Conjecture

Example

$$\ell = 0$$